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Morphological Diversity and Source Separation

J. Bobin, Y. Moudden, J.-L. Starck, and M. Elad

Abstract— This paper describes a new method for blind source
separation, adapted to the case of sources having different
morphologies. We show that such morphological diversity leads
to a new and very efficient separation method, even in the
presence of noise. The algorithm, coined MMCA (Multichannel
Morphological Component Analysis), is an extension of the Mor-
phological Component Analysis method (MCA). The latter takes
advantage of the sparse representation of structured data in large
overcomplete dictionaries to separate features in the databased
on their morphology. MCA has been shown to be an efficient
technique in such problems as separating an image into texture
and piecewise smooth parts or for inpainting applications.The
proposed extension, MMCA, extends the above for multichannel
data, achieving a better source separation in those circumstances.
Furthermore, the new algorithm can efficiently achieve good
separation in a noisy context where standard ICA methods fail.
The efficiency of the proposed scheme is confirmed in numerical
experiments.

Index Terms— Blind source separation, sparse representations,
morphological component analysis.

I. I NTRODUCTION

A common assumption in signal or image processing is that
measurementsX made typically using an array of sensors,
often consist of mixtures of contributions from various possi-
bly independent underlying physical processesS. The simplest
mixture model is linear and instantaneous and takes the form:

X = AS + N (1)

whereX andS are random matrices of respective sizesm× t
and n × t and A is an m × n matrix. Multiplying S by A

linearly mixes then sources intom observed processes. Thus,
the rows ofS, sk, are the sources, and the rows ofA, ak, are
the mixture weights. Anm× t random matrixN is included
to account for instrumental noise or model imperfections. The
problem is to invert the mixing process so as to separate the
data back into its constitutive elementary building blocks.

In the blind approach (where both the mixing matrix and the
sources are unknown), and assuming minimal prior knowledge
on mixing process, source separation is merely about devising
quantitative measures of diversity or contrast. ClassicalInde-
pendent Component Analysis (ICA) methods assume that the
mixed sources are statistically independent; these techniques
(for example JADE, FastICA, Infomax) have proven to be
successful in a wide range of applications (see [1]–[4], and
references therein). Indeed, although statistical independence
is a strong assumption, it is in many cases physically plausible.

An especially important case is when the mixed sources
are highly sparse, meaning that each source is rarely active
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and mostly (nearly) zero. The independence assumption in
such case implies that the probability for two sources to
be significant simultaneously is extremely low, so that the
sources may be treated as having nearly disjoint supports.
This is exploited for instance in sparse component analysis[5].
Indeed, it has been already shown in [6] that first moving the
data into a representation in which the sources are assumed
to be sparse greatly enhances the quality of the separation.
Possible representation dictionaries include the Fourierand
related bases, wavelet bases, and more. Working with combi-
nations of several bases or with very redundant dictionaries
such as the undecimated wavelet frames or the more recent
ridgelets and curvelets [7] could lead to even more efficient
representations. However, finding the smallest subset of ele-
ments (that linearly combine to reproduce a given signal or
image) is a hard combinatorial problem. Nevertheless, several
pursuit algorithms have been proposed that can help build very
sparse decompositions [8], [9]. In fact, a number of recent
results prove that these algorithms will recover the unique
optimal decomposition provided that this solution is sparse
enough and the dictionary is sufficiently incoherent [10], [11].

In another context, the Morphological Component Analysis
(MCA) described in [12] uses the idea of sparse representation
for the separation of sources from a single mixture. MCA
constructs a sparse representation of a signal or an image
considering that it is a combination of features which are
sparsely represented by different dictionaries. For instance,
images commonly combine contours and textures: the former
are well accounted for using curvelets, while the latter maybe
well represented using local cosine functions. In searching a
sparse decomposition of a signal or imagey, it is assumed
that y is a sum ofn components,sk, where each can be
described assk = Φkαk with an over-complete dictionary
Φk and a sparse representationαk. It is further assumed
that for any given component the sparsest decomposition
over the proper dictionary yields a highly sparse description,
while its decomposition over the other dictionaries,Φk′ 6=k,
is highly non sparse. Thus, the differentΦk can be seen as
discriminating between the different components of the initial
signal. Ideally, theαk are the solutions of :

min
{α1,..., αn}

n
∑

k=1

‖αk‖0 subject to y =

n
∑

k=1

Φkαk. (2)

However, as thè0 norm is non-convex, optimizing the above
criterion is combinatorial by nature. Substituting the`0-norm
by an`1, as motivated by recent equivalence results [10], and
relaxing the equality constraint, the MCA algorithm seeks a
solution to

min
y1,...,yn

λ

n
∑

k=1

‖αk‖1 +

∥

∥

∥

∥

∥

y −

n
∑

k=1

sk

∥

∥

∥

∥

∥
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2

with sk = Φkαk. (3)

A detailed description of MCA is given in [12] along with
results of experiments in contour/texture separation in images
and inpainting. Note that there is no mixing matrix to be
estimated in the MCA model and the mixture weights are
absorbed by the source signalssk.

The purpose of this contribution is to extend the MCA to the
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case of multi-channel data, as described in the next section. In
handling several mixtures together, the mixing matrix becomes
an unknown as well, which adds some complexity to the
overall problem. On the other hand, having more than one
mixture is expected to help the separation, leading to better
performance compared to regular MCA. Section III illustrates
the performance of MMCA, and demonstrates its superiority
over both MCA and several ICA techniques. We should note
that our method could also be considered as an extension of
the algorithm described in [6], with two major differences:
(i) while [6] uses a a single transform to sparsify the data,
our technique assumes the use of different dictionaries for
different sources; (ii) the numerical scheme that we lead
to in the construction of the algorithm is entirely different.
Interestingly, a similar philosophy has been employed by [13]
for audiophonic signals. Their method assumes that an audio
signal is mainly made of a ’tonal’ part (sparse in a discrete
cosine dictionary), a transient part (well sparsified by a wavelet
transform) and a residual. However their decomposition algo-
rithm is not based on an iterative scheme, which is a major
difference with MMCA. Indeed, experiments show that such
an iterative process is needed when the considered transforms
are far from being incoherent (for instance DCT and curvelet
transform).

II. M ULTICHANNEL MCA

We consider the mixing model (1) and make the additional
assumption that each sourcesk is well (i.e. sparsely) repre-
sented by a specific and different dictionaryΦk. Assigning
a Laplacian prior with precisionλk to the decomposition
coefficients of thekth sourcesk in dictionaryΦk is a practical
way to implement this property. Here,sk denotes the1 × t
array of thekth source samples. Classically, we assume zero-
mean Gaussian white noise. This leads to the following joint
estimator of the source processesS =

[

sT
1 , . . . , sT

n

]T
and the

mixing matrix A:

{Ŝ, Â} = Arg min
S,A
‖X−AS‖

2

F +
∑

k

λk‖skTk‖1, (4)

where‖M‖2F = trace
(

M
T
M

)

is the Frobenius norm. In the
above formulation we defineTk = Φ

+

k , implying that the
transform is applied in an analysis mode of operation, very
much like in the MCA [12]. Unfortunately, this minimization
problem suffers from a lack of scale invariance of the objective
function: scaling the mixing matrix byA ← ρA, and an
inverse scaling of the source matrix,S ← 1

ρ
S, leaves the

quadratic measure of fit unchanged while deeply altering the
sparsity term. This problem can be alleviated by forcing the
mixing matrix to have normalized columnsak, implying that
each of the source signals is scaled by a scalar. Practically,
this can be achieved by normalizing these columns at each
iteration (ak+

← ak−/‖ak−‖2), and propagating the scale
factor to the corresponding source bysk

+ ← ‖ak−‖2sk
−.

We propose solving (4) by breakingAS into n rank-1 terms,
AS =

∑n

k=1
aksk, and updating one at a time. Define

the kth multichannel residualXk = X −
∑

k′ 6=k ak′

sk′ as
corresponding to the part of the data unexplained by the
other couples{ak′

, sk′}k′ 6=k. Then, minimizing the objective

function with respect tosk assumingak is fixed as well as all
sk′ 6=k andak′ 6=k leads to:

sk =
1

‖ak‖22

(

akT
Xk −

λk

2
Sign(skTk)TT

k .

)

(5)

This is a closed-form solution, known as soft-thresholding,
known to be exact for the case of unitary matricesTk.

As Tk becomes a redundant transform, we keep this
interpretation as an approximate solution, and update the
source signalsk by soft-thresholding the coefficients of the
decomposition of acoarse version(1/‖ak‖22)a

kT
XkTk with

a scalar thresholdλk/(2‖ak‖22) (see [14] for more details on
the justification of this step). Then, considering a fixedsk,
the update onak follows from a simple least squares linear
regression. The MMCA algorithm is given below:

1. Set number of iterations Lmax & thresholds ∀k, δk = Lmax ·

λk/2

2. While δk > λk/2,
For k = 1, . . . , ns:
• Renormalize ak, sk and δk

• Update sk assuming all sk′ 6=k and ak
′

are fixed:
– Compute the residual Xk = X −

P

k′ 6=k
ak

′

sk′

– Project Xk: s̃k =
1

‖ak‖2

2

akT
Xk

– Compute αk = s̃kTk

– Soft threshold αk with threshold δk, yielding α̂k

– Reconstruct sk by sk = α̂kT
T

k

• Update ak assuming all sk′ and ak
′ 6=k are fixed:

– ak =
1

‖sk‖2

2

Xksk
T

Lower the thresholds: δk = δk − λk/2.

At each iteration,coarse (i.e. smooth) versions of the
sources are computed. The mixing matrix is then estimated
from sources that contain the most significant parts of the
original sources. The overall optimization proceeds by al-
ternately refining both the sources and the mixing matrix.
The use of a progressive thresholding scheme with a set
of thresholdsδk decreasing slowly towardsλk/2 enforces a
certain robustness to noise. Indeed, both alternate projections
and iterative thresholding define a non trivial path for the
variables to estimate (sources and mixing matrix) during
the optimization. This optimization scheme leads to a good
estimation as underlined in [12]. MMCA benefits from the
potential of overcomplete dictionaries for sparse representa-
tion. In comparison with the algorithm in [6], which uses
a single sparsifying transform and a quadratic programming
technique, our method considers more than just one transform
and a shrinkage-based optimization. In the case where we have
only one channel and the mixing matrix is known and equal to
(1 · · · 1) then we can see that MMCA is equivalent to MCA.
The next section will illustrate the efficiency of the MMCA
algorithm when the sources to be separated have different
morphologies.

III. R ESULTS

A. Experiment 1: One-dimensional toy example

We start by illustrating the performance of MMCA with
the simple BSS experiment on one-dimensional data. The two
source signals at the top-left of Figure 1 were linearly mixed
to form the three synthetic observations shown at the top-
right. A Gaussian noise withσ = 0.05 was also added to
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the mixtures (note that each channel has a unit variance).
The two sources are morphologically different: one consists
of four bumps and the other is a plain sine-wave. Source
separation was conducted using the above MMCA algorithm,
using the Fourier and the trivial basis as the representing
dictionaries. For the sake of comparison, a publicly available
implementation of the JADE algorithm was also tested1. As
can be seen, MMCA is clearly able to efficiently separate the
original source signals. Note that denoising is an intrinsic part
of the algorithm.

Fig. 1. Experiment 1:Top left: The two initial source signals.Top right:
Three noisyobservedmixtures.Bottom left: The two source signals recon-
structed using MMCA.Bottom right: The two source signals reconstructed
with Jade.

B. Experiment 2: Blind separation of images

We now turn to use MMCA to separate efficiently two-
dimensional data. In Figure 2, the two left pictures are the
sources. The first source image is composed of three curves
which are well represented by a curvelet transform. We use
the global discrete cosine transform (DCT) to represent the
second source image. Although the resulting representation
may not be extremely sparse, what is significant here is that
contrastingly the representation of the first component using
the global DCT is not sparse. The mixtures are shown in
the second image pair. A Gaussian noise has been added to
these mixtures, using different noise variances for the different
channels. Finally the two images in the last column show the
MMCA source estimates. Visually the MMCA performs well.

We compare the MMCA with two standard source separa-
tion techniques: JADE and FastICA [1]. As the original JADE
algorithm has not been devised to take into account additive
noise, we apply denoising on its outputs (using a standard
wavelet denoising technique assuming that the noise variances
are known). Note that we could denoise the data before
separation; however the non-linear wavelet denoising erases
the coherence between the channels, so that an ICA-based
method would fail to separate the sources from the denoised
data. We also compare MMCA with a more recent method
based on sparse representations which is described in [15].
We also estimate the mixing matrix using the Relative Newton
Method after a 2D-wavelet transform of the mixtures. The
graphs in Figure 3 show the correlation between the original
sources and their estimates as the data noise variance increases.
One can note that both JADE and FastICA have similar
performance. As the data noise variance increases, MMCA

1Taken fromhttp://www.tsi.enst.fr/ cardoso/guidesepsou.html.

clearly achieves better source estimation, and shows clear
robustness compared to non-denoised ICA-based methods and
to the Relative Newton Method. We also observed that the
Relative Newton Method [15] seems rather unstable as the
noise variance increases. MMCA provides a similar behavior
compared to denoised versions of the classical ICA-based
algorithms.

As the noise variance increases, the mixing matrices esti-
mated using ICA-based methods are biased and thus these
methods fail to correctly estimate the sources. Moreover,
denoising after the separation process softens the separation
error. Hence, the denoised versions of the JADE and FastICA
seem to perform as well as MMCA. As a consequence, a more
efficient criterion is needed. A natural way of assessing the
separation quality is to compare the estimated and original
mixing matrices. Quantitative results are shown in Figure
4, where the mixing matrix estimation error is defined as
ρA = ||I−Λ

−1
Ã

−1
A||1 (vector norm).A is the true mixing

matrix, Ã is the estimated one andΛ is a matrix which
restores the right scaling and permutation on the estimated
matrix. If Ã = ΛA (i.e Ã is equal toA up to scaling
and permutation) thenρA = 0; thusρA measures a deviation
from the true mixture. Contrasting with standard ICA methods,
MMCA iteratively estimates the mixing matrixA from coarse
(i.e. smooth) versions of the sources and thus is not penalized
by the presence of noise. As a consequence, MMCA is clearly
more robust to noise than standard ICA methods even in
the case of very noisy mixtures. Indeed it can be noticed in
Figure 3 and 4 that when the noise variance increases, standard
ICA-based methods fail whereas MMCA still performs well.
MMCA also performs better than a sparsity-based algorithm
described in [15].

Fig. 2. Experiment 2 (using curvelet and DCT):First column: The original
sources of variance 1.Second column:their mixtures (a Gaussian noise is
added :σ = 0.4 and0.6 for channels1 and2 respectively. The mixtures are
such thatx1 = 0.5s1 − 0.5s2 and x2 = 0.3s1 + 0.7s2).Third column:
sources estimated by MMCA.

Fig. 3. Experiment 2: Correlation between the true source signals and
the sources estimated by JADE (dotted line), denoised JADE (dashed line),
FastICA (�), denoised FastICA (+), the Relative Newton Method (dashdot)
and MMCA (solid), as a function of the noise powerσ.
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Fig. 4. Experiment 2: Mixing matrix error (defined viaρA) for JADE (dotted
line), FastICA (�), the Relative Newton Method (dashdot) and MMCA (solid),
as a function of the noise powerσ.

C. Experiment 3: MMCA versus MCA

Morphological Component Analysis [12] has been devised
to extract both texture and cartoon components from a single
image. We describe here an experiment where we use MMCA
for a similar purpose in order to compare the two methods.
Note that MCA is applied when only one mixture (m = 1) is
provided. Let us point out that the main difference between
these methods is the estimation of the mixing matrix in
MMCA which is not needed in MCA. Figure 5 features
two original pictures: the first one is mainly a cartoon well
sparsified by a curvelet transform; the other is a texture
represented well by global 2D-DCT. Two noisy mixtures are
shown in the second column. We applied MCA to the sum
of the two original sources, and MMCA to a random number
of mixtures (between 2 and 10 channels). The last column
of Figure 5 features the two sources estimated by MMCA
based on 10 mixtures. Quantitatively, Figure 6 shows the
correlation between the original sources and those estimated
using MMCA as the number of mixtures increases. Clearly,
the amount of information provided by the multichannel data
improves source estimation, as expected.

Fig. 5. Experiment 3 (using curvelet and DCT):First column: The
original sources. They have been normalized to unit variance. Second column:
mixtures of the initial sources. A Gaussian noise of variance σ = 0.3 was
added to each channel.Third column: sources estimated by MMCA from
10 mixtures.

IV. CONCLUSION

The MCA algorithm provides a powerful and fast signal
decomposition method, based on sparse and redundant rep-
resentations over separate dictionaries. The MMCA algorithm
described in this paper extends MCA to the multichannel case.
For blind source separation, this extension is shown to per-
form well provided the original sources are morphologically
different, meaning that the sources are sparsely represented in

different bases. We also demonstrated that MMCA performs
better than standard ICA-based source separation in a noisy
context. We are currently working on improvements and gen-
eralizations of MMCA where each source can be modelled as
a linear combination of morphologically different components.
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