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Morphological Diversity and Source Separation and mostly (nearly) zero. The independence assumption in
such case implies that the probability for two sources to
J. Bobin, Y. Moudden, J.-L. Starck, and M. Elad be significant simultaneously is extremely low, so that the
sources may be treated as having nearly disjoint supports.
Abstract— This paper describes a new method for blind source This is e?(pIOIted forinstance in spar§e compongnt anal?}ys
separation, adapted to the case of sources having different Indeed, it has been already shown in [6] that first moving the
morphologies. We show that such morphological diversity lads data into a representation in which the sources are assumed
to a new and very efficient separation method, even in the to be sparse greatly enhances the quality of the separation.
presence of noise. The algorithm, coined MMCA (Multichanné  pqqiple representation dictionaries include the Fouared
Morphological Component Analysis), is an extension of the Mr- lated b let b d Worki ith bi
phological Component Analysis method (MCA). The latter tales re Qte ases, wavelet bases, ?m more. Vorking W't_ Com -
advantage of the sparse representation of structured datanilarge  nations of several bases or with very redundant dictiosarie
overcomplete dictionaries to separate features in the datbased such as the undecimated wavelet frames or the more recent
on their morphology. MCA has been shown to be an efficient riggelets and curvelets [7] could lead to even more efficient
technique in such problems as separating an image into text oo santations. However, finding the smallest subsetesf el

and piecewise smooth parts or for inpainting applications.The . . . .
proposed extension, MMCA, extends the above for multichanel MeNts (that linearly combine to reproduce a given signal or

data, achieving a better source separation in those circunsnces. image) is a hard combinatorial problem. Nevertheless,raéve
Furthermore, the new algorithm can efficiently achieve good pursuit algorithms have been proposed that can help build ve

separation in a noisy context where standard ICA methods fdi sparse decompositions [8], [9]. In fact, a number of recent
l—;‘se‘:mzﬁ?;y of the proposed scheme is confirmed in numerita results prove that these algorithms will recover the unique
optimal decomposition provided that this solution is spars
Index Terms— Blind source separation, sparse representations, enough and the dictionary is sufficiently incoherent [1QJL]{
morphological component analysis. In another context, the Morphological Component Analysis
(MCA) described in [12] uses the idea of sparse representati
|. INTRODUCTION for the separation of sources from a single mixture. MCA
A common assumption in signal or image processing is the@nstructs a sparse representation of a signal or an image
measurementX made typically using an array of sensorsgonsidering that it is a combination of features which are
often consist of mixtures of contributions from various gies sparsely represented by different dictionaries. For msta
bly independent underlying physical procesSe$he simplest images commonly combine contours and textures: the former
mixture model is linear and instantaneous and takes the: foraie well accounted for using curvelets, while the latter inay
well represented using local cosine functions. In seacchin
X=AS + N @) sparse decomposition of a signal or imageit is assumed

whereX and$ are random matrices of respective sizesct thaty is a sum ofn components;s;, where each can be
andn x t and A is anm x n matrix. Multiplying S by A described as, = ®ra; with an over-complete dictionary
linearly mixes then sources inton observed processes. Thus®x and a sparse representation. It is further assumed
the rows ofS, s, are the sources, and the rowsAf ay, are that for any given component the sparsest decomposition
the mixture weights. Ann x ¢ random matrixN is included ©Over the proper dictionary yields a highly sparse desanpti
to account for instrumental noise or model imperfectiortse T While its decomposition over the other dictionaries .,
problem is to invert the mixing process so as to separate #8ehighly non sparse. Thus, the differed, can be seen as
data back into its constitutive elementary building blocks discriminating between the different components of th&ahi

In the blind approach (where both the mixing matrix and th@ignal. Ideally, the;, are the solutions of :
sources are unknown), and assuming minimal prior knowledge n n
on mixing process, source separation is merely about aeyisi min Z lakllo subjectto y = Z ®par. (2)
guantitative measures of diversity or contrast. Clasdiodé- fonan 4 k=1
pendent Component Analysis (ICA) methods assume that figwever, as theé” norm is non-convex, optimizing the above
mixed sources are statistically independent; these t§uBSi criterion is combinatorial by nature. Substituting tflenorm
(for example JADE, FastICA, Infomax) have proven to bgy ans! as motivated by recent equivalence results [10], and
successful in a wide range of applications (see [1]-[4], a’?éaxing the equality constraint, the MCA algorithm seeks a
references therein). Indeed, although statistical indépece gg|ytion to
is a strong assumption, it is in many cases physically pléeisi .

An especially important case is when the mixed sources . )‘Z lowlls +

k=1

. . . . with =®pay. (3
are highly sparse, meaning that each source is rarely actlwer,r.l.l.g“ Sk sk (3)

n 2
Y= s
k=1 2
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case of multi-channel data, as described in the next sedtionfunction with respect ta; assuming:* is fixed as well as all
handling several mixtures together, the mixing matrix bees s, anda* #* leads to:

an unknown as well, which adds some complexity to the 1 r A

overall problem. On the other hand, having more than one Sk = T3 (ak Xy — —’Sign(ska)T{) (5)
mixture is expected to help the separation, leading to bette lla* 1] 2

performance compared to regular MCA. Section Ill illustsat This is a closed-form solution, known as soft-thresholding
the performance of MMCA, and demonstrates its superiorignown to be exact for the case of unitary matri@s

over both MCA and several ICA techniques. We should note As T, becomes a redundant transform, we keep this
that our method could also be considered as an extensionrdérpretation as an approximate solution, and update the
the algorithm described in [6], with two major differencessource signal; by soft-thresholding the coefﬂments of the
(i) while [6] uses a a single transform to sparsify the dataecomposition of aoarse version(1/|a”||2)a KT X T with

our technique assumes the use of different dictionaries farscalar threshold, /(2|/a*||2) (see [14] for more details on
different sources; (ii) the numerical scheme that we leabe justification of this step). Then, considering a fixed

to in the construction of the algorithm is entirely diffeten the update oru* follows from a simple least squares linear
Interestingly, a similar philosophy has been employed I8} [1regression. The MMCA algorithm is given below:

f(:Ji‘ aUd.iOpho.mC signals. Their method assumes_that a_n au 'Cﬂ. Set number of iterations Lmax & thresholds Vk, 6y = Lmax -
signal is mainly made of a 'tonal’ part (sparse in a discrete , /2

cosine dictionary), a transient part (well sparsified by aelet 2. While 6 > >\k/2

transform) and a residual. However their decomposition-alg Fork =1,.

. . . . . . ) . Renormahze a®, s, and &y, ,
rithm is not based on an iterative scheme, which is a majq o Update s, assuming all s, and a*” are fixed:

-

difference with MMCA. Indeed, experiments show that sucl ~ Compute the residual X, = X — 3/, o s
an iterative process is needed when the considered tramsfor ~ Project X2 8, = 1z ;Hz a*TxX,
are far from being incoherent (for instance DCT and curvelet — Compute o, = 5, Ty,
transform). — Soft threshold o, with threshold &, yielding Gy,
— Reconstruct sy, by s, = 64, TE
Il. MULTICHANNEL MCA o Update a* assuming all s/ and o' #* are fixed:
—_ak=_1 X T
@ Ysg 3 ROk

We consider the mixing model (1) and make the additional
assumption that each soureg is well (i.e. sparsely) repre-
sented by a specific and different dictiona®y,. Assigning At each iteration,coarse (i.e. smooth versions of the
a Laplacian prior with precision\, to the decomposition sources are computed. The mixing matrix is then estimated
coefficients of the:" sources;, in dictionary®,, is a practical from sources that contain the most significant parts of the
way to implement this property. Here;, denotes thel x ¢ original sources. The overall optimization proceeds by al-
array of thek!™™ source samples. Classically, we assume zer@rnately refining both the sources and the mixing matrix.
mean Gaussian white noise. This leads to the following joiiihe use of a progressive thresholding scheme with a set
estimator of the source processes= [s7,.. ., SS]T and the of thresholdss, decreasing slowly towards, /2 enforces a
mixing matrix A: certain robustness to noise. Indeed, both alternate pimjesc

. . 5 and iterative thresholding define a non trivial path for the
{S,A} = Arg r§111§1||X—ASHF+Z)‘k||3ka||1’ (4)  variables to estimate (sources and mixing matrix) during
’ k the optimization. This optimization scheme leads to a good
where||M||% = trace(M”M) is the Frobenius norm. In the estimation as underlined in [12]. MMCA benefits from the
above formulation we defin@d', = éz, implying that the potential of overcomplete dictionaries for sparse reprse
transform is applied in an analysis mode of operation, vetpn. In comparison with the algorithm in [6], which uses
much like in the MCA [12]. Unfortunately, this minimizationa single sparsifying transform and a quadratic programming
problem suffers from a lack of scale invariance of the ofject technique, our method considers more than just one transfor
function: scaling the mixing matrix byA « pA, and an and a shrinkage-based optimization. In the case where we hav
inverse scaling of the source matri®, «— 1s leaves the only one channel and the mixing matrix is known and equal to
quadratic measure of fit unchanged while deeply altering the- - - 1) then we can see that MMCA is equivalent to MCA.
sparsity term. This problem can be alleviated by forcing thEhe next section will illustrate the efficiency of the MMCA
mixing matrix to have normalized colummag, implying that algorithm when the sources to be separated have different
each of the source signals is scaled by a scalar. Practicamprphologies.
this can be achieved by normalizing these columns at each
iteration @*" « a*/[a*"[|2), and propagating the scale _ _ _
factor to the corresponding source byt «— |[a* ||,s,~. A Experiment 1. One-dimensional toy example
We propose solving (4) by breakigS into n rank-1 terms,  We start by illustrating the performance of MMCA with
AS = Y7}, a"s;, and updating one at a time. Definehe simple BSS experiment on one-dimensional data. The two
the £ multichannel residualX;, = X — Zk,# a¥ s, as source signals at the top-left of Figure 1 were linearly rdixe
corresponding to the part of the data unexplained by the form the three synthetic observations shown at the top-
other couples{ak',sk/}k/#. Then, minimizing the objective right. A Gaussian noise witlr = 0.05 was also added to

k
Lower the thresholds: O = 0 — Mg /2.

1. RESULTS
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the mixtures (note that each channel has a unit variancelgarly achieves better source estimation, and shows clear
The two sources are morphologically different: one cossistobustness compared to non-denoised ICA-based methods and
of four bumps and the other is a plain sine-wave. Sourte the Relative Newton Method. We also observed that the
separation was conducted using the above MMCA algorithiRelative Newton Method [15] seems rather unstable as the
using the Fourier and the trivial basis as the representingise variance increases. MMCA provides a similar behavior
dictionaries. For the sake of comparison, a publicly atééa compared to denoised versions of the classical ICA-based
implementation of the JADE algorithm was also testeéls algorithms.
can be seen, MMCA is clearly able to efficiently separate the As the noise variance increases, the mixing matrices esti-
original source signals. Note that denoising is an intomgrt mated using ICA-based methods are biased and thus these
of the algorithm. methods fail to correctly estimate the sources. Moreover,
- Smistes e o Ghannel! denoising after the separation process softens the siparat
“n I “-l o~ "4 error. Hence, the denoised versions of the JADE and FastiCA
I Y et —1 seem to perform as well as MMCA. As a consequence, a more
Simulated source 2 E N /- . | .. . . . .
T T eff|C|ent_ crlterlor_l is needed. A natural way of assessing _the
: j separation quality is to compare the estimated and original
e et mixing matrices. Quantitative results are shown in Figure
MMCA reconstructed source 1 JADE reconstructed source 1 .. . . . . .
. ‘ ~ 4, where the mixing matrix estimation error is defined as

i “ 11:: H o I pa = [[I— A~'A~'AJ|; (vector norm)A is the true mixing

A 7
E L

L

 iMCAseconsiuctedsoucsz  oemcomtutiorny matrix, A is the estimated one and is a matrix which
N0 N N restores the right scaling and permutation on the estimated
e o ] b matrix. If A = AA (i.e A is equal toA up to scaling

Fig.ll. Exbperiment 17Tropwleft: The two initial source signaIsTob rig”ht: and permutation) thepa = 0; thus po measures a deviation

Three noisyobservedmixtures. Bottom left: The two source signals recon- ; ; ;
structed using MMCABottom right: The two source signals reconstructedfrom the true mixture. Contrasting with standard ICA metiod

with Jade. MMCA iteratively estimates the mixing matrix from coarse
(i.e. smooth) versions of the sources and thus is not penalized
B. Experiment 2: Blind separation of images by the presence of noise. As a consequence, MMCA is clearly

We now turn to use MMCA to Separate efﬁcienﬂy tWOmore robust to noise than standard ICA methods even in

dimensional data. In Figure 2, the two left pictures are i€ case of very noisy mixtures. Indeed it can be noticed in
sources. The first source image is composed of three curfd@ure 3 and 4 that when the noise variance increases, standa
which are well represented by a curvelet transform. We uleA-based methods fail whereas MMCA sitill performs well.
the global discrete cosine transform (DCT) to represent thEMCA also performs better than a sparsity-based algorithm
second source image. Although the resulting representatf@escribed in [15].
may not be extremely sparse, what is significant here is that
contrastingly the representation of the first componemqsi
the global DCT is not sparse. The mixtures are shown in
the second image pair. A Gaussian noise has been added t
these mixtures, using different noise variances for thiewift
channels. Finally the two images in the last column show the
MMCA source estimates. Visually the MMCA performs well.
We compare the MMCA with two standard source separa-
tion techniques: JADE and FastICA [1]. As the original JADE
algorithm has not been devised to take into account additive
noise, we apply denoising on its outputs (using a standard o
wavelet denoising technique assuming that the noise mnFig. 2. Experiment 2 (using curvelet 'and_ DCFrst column: The original
. sources of variance ISecond column:their mixtures (a Gaussian noise is
are known). Note that we could denoise the data befofgyed .o = 0.4 and0.6 for channelsl and2 respectively. The mixtures are
separation; however the non-linear wavelet denoisingesrasuch thatz; = 0.5s; — 0.5s2 andzz = 0.3s1 + 0.7s2).Third column:
the coherence between the channels, so that an ICA-baSRjces estmated by MMCA.
method would fail to separate the sources from the denoised
data. We also compare MMCA with a more recent methc |
based on sparse representations which is described in [I
We also estimate the mixing matrix using the Relative Newtc
Method after a 2D-wavelet transform of the mixtures. Th
graphs in Figure 3 show the correlation between the origir
sources and their estimates as the data noise variancaseste

One can note that both JADE and FastICA have simil&io- 3- Exper_iment 2: Correlation l_)etween t_he true sourgmads _and
sources estimated by JADHofted ling, denoised JADEdashed ling

performance. As the data noise variance increases, MM(;hé!stICA ©), denoised FastICA+), the Relative Newton Methoddéshdot
and MMCA (solid), as a function of the noise power.

AL
AN

Source Correlation 1 Source Correlation 2

1Taken fromhttp://www.tsi.enst.fr/ cardoso/guidesepsou.html
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Mixing Matrix Criterion

different bases. We also demonstrated that MMCA performs
better than standard ICA-based source separation in a noisy
context. We are currently working on improvements and gen-
eralizations of MMCA where each source can be modelled as

Fig. 4. Experiment 2: Mixing matrix error (defined vigy ) for JADE (dotted
line), FastICA ¢), the Relative Newton Methodiéshdoy and MMCA (solid),
as a function of the noise power.

(1]

C. Experiment 3: MMCA versus MCA A

Morphological Component Analysis [12] has been devisef
to extract both texture and cartoon components from a sing e]
image. We describe here an experiment where we use MMCA
for a similar purpose in order to compare the two methodd#
Note that MCA is applied when only one mixture: (= 1) is
provided. Let us point out that the main difference between
these methods is the estimation of the mixing matrix ir}s]
MMCA which is not needed in MCA. Figure 5 features
two original pictures: the first one is mainly a cartoon well
sparsified by a curvelet transform; the other is a textur®l
represented well by global 2D-DCT. Two noisy mixtures are
shown in the second column. We applied MCA to the sunf7]
of the two original sources, and MMCA to a random number
of mixtures (between 2 and 10 channels). The last columg,
of Figure 5 features the two sources estimated by MMCA
based on 10 mixtures. Quantitatively, Figure 6 shows thﬁ;]
correlation between the original sources and those esnat
using MMCA as the number of mixtures increases. Clearly,
the amount of information provided by the multichannel data®l
improves source estimation, as expected. [11]

[12]
[13]
[14]

(18]

Fig. 5. Experiment 3 (using curvelet and DCTirst column: The
original sources. They have been normalized to unit vaea®econd column:
mixtures of the initial sources. A Gaussian noise of vagaac= 0.3 was
added to each channérhird column: sources estimated by MMCA from
10 mixtures.

IV. CONCLUSION
The MCA algorithm provides a powerful and fast signal

decomposition method, based on sparse and redundant ref
resentations over separate dictionaries. The MMCA algorit

described in this paper extends MCA to the multichannel.case

Lo
/

a linear combination of morphologically different compais
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Source correlation 1 - MMCA

Source correlation 2 - MMCA

For blind Sour?e separatlpn, this extension is shown t_O pne—{é 6. Experiment 3: Correlation between the true sourcestae MMCA
form well provided the original sources are morphologigallestimates as the number of mixtures increasest: cartoon component -

different, meaning that the sources are sparsely repebémt Right: texture component. Note that the results for one mixtureespond
to MCA.



